90 research outputs found

    Efficient Cross-Validation of Echo State Networks

    Full text link
    Echo State Networks (ESNs) are known for their fast and precise one-shot learning of time series. But they often need good hyper-parameter tuning for best performance. For this good validation is key, but usually, a single validation split is used. In this rather practical contribution we suggest several schemes for cross-validating ESNs and introduce an efficient algorithm for implementing them. The component that dominates the time complexity of the already quite fast ESN training remains constant (does not scale up with kk) in our proposed method of doing kk-fold cross-validation. The component that does scale linearly with kk starts dominating only in some not very common situations. Thus in many situations kk-fold cross-validation of ESNs can be done for virtually the same time complexity as a simple single split validation. Space complexity can also remain the same. We also discuss when the proposed validation schemes for ESNs could be beneficial and empirically investigate them on several different real-world datasets.Comment: Accepted in ICANN'19 Workshop on Reservoir Computin

    Reservoir Computing Approach to Robust Computation using Unreliable Nanoscale Networks

    Full text link
    As we approach the physical limits of CMOS technology, advances in materials science and nanotechnology are making available a variety of unconventional computing substrates that can potentially replace top-down-designed silicon-based computing devices. Inherent stochasticity in the fabrication process and nanometer scale of these substrates inevitably lead to design variations, defects, faults, and noise in the resulting devices. A key challenge is how to harness such devices to perform robust computation. We propose reservoir computing as a solution. In reservoir computing, computation takes place by translating the dynamics of an excited medium, called a reservoir, into a desired output. This approach eliminates the need for external control and redundancy, and the programming is done using a closed-form regression problem on the output, which also allows concurrent programming using a single device. Using a theoretical model, we show that both regular and irregular reservoirs are intrinsically robust to structural noise as they perform computation

    Dynamic clustering of time series with Echo State Networks

    Get PDF
    In this paper we introduce a novel methodology for unsupervised analysis of time series, based upon the iterative implementation of a clustering algorithm embedded into the evolution of a recurrent Echo State Network. The main features of the temporal data are captured by the dynamical evolution of the network states, which are then subject to a clustering procedure. We apply the proposed algorithm to time series coming from records of eye movements, called saccades, which are recorded for diagnosis of a neurodegenerative form of ataxia. This is a hard classification problem, since saccades from patients at an early stage of the disease are practically indistinguishable from those coming from healthy subjects. The unsupervised clustering algorithm implanted within the recurrent network produces more compact clusters, compared to conventional clustering of static data, and provides a source of information that could aid diagnosis and assessment of the disease.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Physics-Informed Echo State Networks for Chaotic Systems Forecasting

    Full text link
    We propose a physics-informed Echo State Network (ESN) to predict the evolution of chaotic systems. Compared to conventional ESNs, the physics-informed ESNs are trained to solve supervised learning tasks while ensuring that their predictions do not violate physical laws. This is achieved by introducing an additional loss function during the training of the ESNs, which penalizes non-physical predictions without the need of any additional training data. This approach is demonstrated on a chaotic Lorenz system, where the physics-informed ESNs improve the predictability horizon by about two Lyapunov times as compared to conventional ESNs. The proposed framework shows the potential of using machine learning combined with prior physical knowledge to improve the time-accurate prediction of chaotic dynamical systems.Comment: 7 pages, 3 figure

    Physics-Informed Echo State Networks for Chaotic Systems Forecasting

    Get PDF
    We propose a physics-informed Echo State Network (ESN) to predict the evolution of chaotic systems. Compared to conventional ESNs, the physics-informed ESNs are trained to solve supervised learning tasks while ensuring that their predictions do not violate physical laws. This is achieved by introducing an additional loss function during the training of the ESNs, which penalizes non-physical predictions without the need of any additional training data. This approach is demonstrated on a chaotic Lorenz system, where the physics-informed ESNs improve the predictability horizon by about two Lyapunov times as compared to conventional ESNs. The proposed framework shows the potential of using machine learning combined with prior physical knowledge to improve the time-accurate prediction of chaotic dynamical systems

    Hierarchical Temporal Representation in Linear Reservoir Computing

    Full text link
    Recently, studies on deep Reservoir Computing (RC) highlighted the role of layering in deep recurrent neural networks (RNNs). In this paper, the use of linear recurrent units allows us to bring more evidence on the intrinsic hierarchical temporal representation in deep RNNs through frequency analysis applied to the state signals. The potentiality of our approach is assessed on the class of Multiple Superimposed Oscillator tasks. Furthermore, our investigation provides useful insights to open a discussion on the main aspects that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian Workshop on Neural Networks, WIRN 201

    Algorithms and Results of Eye Tissues Differentiation Based on RF Ultrasound

    Get PDF
    Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    ReservoirPy: an Efficient and User-Friendly Library to Design Echo State Networks

    Get PDF
    International audienceWe present a simple user-friendly library called ReservoirPy based on Python scientific modules. It provides a flexible interface to implement efficient Reservoir Computing (RC) architectures with a particular focus on Echo State Networks (ESN). Advanced features of ReservoirPy allow to improve up to 87.9% of computation time efficiency on a simple laptop compared to basic Python implementation. Overall, we provide tutorials for hyperparameters tuning, offline and online training, fast spectral initialization, parallel and sparse matrix computation on various tasks (MackeyGlass and audio recognition tasks). In particular, we provide graphical tools to easily explore hyperparameters using random search with the help of the hyperopt library

    The role of structure and complexity on Reservoir Computing quality

    Get PDF
    We explore the effect of structure and connection complexity on the dynamical behaviour of Reservoir Computers (RC). At present, considerable effort is taken to design and hand-craft physical reservoir computers. Both structure and physical complexity are often pivotal to task performance, however, assessing their overall importance is challenging. Using a recently proposed framework, we evaluate and compare the dynamical freedom (referring to quality) of neural network structures, as an analogy for physical systems. The results quantify how structure affects the range of behaviours exhibited by these networks. It highlights that high quality reached by more complex structures is often also achievable in simpler structures with greater network size. Alternatively, quality is often improved in smaller networks by adding greater connection complexity. This work demonstrates the benefits of using abstract behaviour representation, rather than evaluation through benchmark tasks, to assess the quality of computing substrates, as the latter typically has biases, and often provides little insight into the complete computing quality of physical systems
    corecore